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Abstract 

The locations of dwell points for idle vehicles in an automated guided 
vehicle (AGV) system determine the response times for pick-up requests and 
thus affect the performance of automated manufacturing systems. In this study, 
we address the problem of optimally locating dwell points for multiple AGVs 
in general guide-path layouts with the objective of minimizing the maximum 
response time in the system. We propose a mixed integer linear programming 
(MILP) formulation for the problem. We also develop a generic genetic 
algorithm (GA) to find near optimal solutions. The MILP model and GA 
procedure are illustrated using a two-dimensional grid layout problem. Our 
computational study shows that the proposed GA procedure can yield near 
optimal solutions for these test problems in reasonable time. 
 
Keywords: Automated Guided Vehicle System; Dwell Point Location; Mixed 
Integer Linear Programming Model; Genetic Algorithm. 

 

1  Introduction 
An AGV is a driverless vehicle that follows wires in the floor, or uses vision or lasers. 
AGV systems are most often used in industrial applications to move materials around a 
manufacturing facility or a warehouse. They have been implemented in a large variety of 
industries such as aerospace, automotive, chemical, electronics, plastic, food and 
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beverage, and textiles as well as in inter-modal container ports. AGV system 
implementations could potentially lead to better production planning and control, safety, 
cost reduction, and flexibility. AGVs also offer a seamless interface with increasingly 
used automated warehousing systems, which can be controlled by integrated warehousing 
management techniques. However, these potential benefits can only be obtained when 
adequate guide-path layouts and control systems for vehicle dispatching, routing, and 
traffic management are available (Ventura and Lee [7]).  

Logistics problems in the implementation of an AGV system comprise location of 
pick-up and delivery (P/D) points, optimal guide-path design, determining the optimal 
number and type of AGVs, positioning of AGVs, assignment of AVGs to pick-up 
requests, routing and dispatching of AGVs, and resolution of deadlocks and routing 
conflicts. Among these problems, positioning of AGVs and assignment to pick-up 
requests is an important control issue in AGV system implementation (Asef-Vaziri and 
Laporte [1]). Since the workload of a manufacturing system changes over time, the 
idleness of the material handling equipment used in the facility is expected in order to 
avoid system overload. Thus, a relevant problem in an AGV system is to decide the 
location of an AGV when it finishes a delivery job and has no immediate assignments, 
because the position of the idle vehicle determines the empty travel time to the next pick-
up request, which is called the response time. The reduction of response times contributes 
to the reduction of the overall material handling time and this is an important objective in 
the material handling design process. In particular, the objective of minimizing the 
maximum response time is important in just-in-time manufacturing facilities and 
distribution centers, where the emphasis is to reduce large turnaround times (Ventura and 
Lee [7]). In certain multi-product multi-line assembly systems using AGV systems, the 
parts required for a particular assembly operation are transported by AGVs from storage 
bins to kitting stations to form kits. The time required to form a complete kit depends on 
the maximum of the travel times of the AGVs that transport the required parts. In 
distribution centers, items related to a single customer order must be collected for 
packing and delivery. Here, the maximum response time determines the overall 
turnaround time. Reduction of turnaround times is crucial as the order picking comprises 
as much as 65% of the operating cost of a typical distribution center (Coyle et al. [2]). 

Egbelu [3] considered the problem of locating dwell points for AGVs to minimize 
the maximum response time in a single loop guide-path layout. He provided optimal 
solutions for the location of a single AGV in uni-directional and bi-directional guide-
paths and proposed heuristic algorithms for the location of multi-vehicles in both types of 
guide-paths. He illustrated the algorithms using small-size example problems. Gademann 
and Van de Velde [5] considered the uni-directional single loop guide-path layout and 
proposed a dynamic programming (DP) algorithm to minimize any regular function of 
the response times. The proposed DP algorithm has a complexity of ( )3O nm , where m is 
the number of pickup points and n is the number of AGVs, in minimizing an arbitrary 
regular function of the response times, and ( )2 logO m m in minimizing the maximum 
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response time. Ventura and Lee [7] considered the uni-directional single loop guide-path 
layout and addressed the problem of optimally locating multiple dwell points for the 
AGVs with the objective of minimizing the maximum response time. A DP algorithm 
with ( )( )2−O n m n complexity was developed to optimally solve the problem. The authors 

showed that the deviation between the solution provided by Egbelu’s heuristic algorithm 
and the optimal solution could be significantly high. Ventura and Rieksts [8] developed a 
DP algorithm to solve idle vehicle positioning problems in uni-directional single loop 
systems to minimize the maximum response time considering restrictions on vehicle time 
availability. They also determined the minimum number of vehicles to handle the 
workload for pickup requests.  

In recent years, general guide-path layouts with cross-aisle and angled-aisle 
structure, which are special cases of grid type layouts, are becoming more prevalent in 
manufacturing industries and warehouses in order to utilize space more efficiently and to 
reduce travel times between locations. Examples of guide-path layout topologies include 
the circle or loop layout, tandem loop layout, uni-dimensional grid layout, and two-
dimensional grid layout (see Figure 1).  

 
Figure 1: Examples of general guide-path layout topologies for AGV systems 
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To our knowledge, there is no publication that considers locating idle AGVs in 
general guide-path layouts. This study addresses the issue of optimally determining dwell 
points for multiple AGVs in general guide-path layouts, which can be modeled as 
directed networks. We show that placing dwell points either at the P/D stations or 
intersection points with out-degree of at least two minimizes the maximum response time 
in general guide-path layouts. We also show that the intersection points with out-degree 
equal to 1 do not qualify as potential dwell point locations. We propose a mixed-integer 
linear programming (MILP) model for the solving the problem with the objective of 
minimizing the maximum response time in the system. We also propose a genetic 
algorithm (GA) which can find near optimal solutions. The MILP model and the GA 
procedure are illustrated using an example of a two-dimensional grid layout. 

The remainder of this paper is organized as follows. In Section 2, we describe the 
dwell point location problem and develop an MILP model for the problem. In Section 3, 
we propose a generic GA to solve the problem for minimizing any linear/non-linear 
function of the response times. In Section 4, we present an illustrative example to show 
the application of the proposed mathematical model and GA procedure. Section 5 
presents some conclusions on the work. 

 
2 Problem description and mathematical model  
In this section, we present an MILP model to optimally locate dwell points for AGVs in 
general guide-path layouts, which can be characterized as directed networks. In a uni-
dimensional grid layout, all AGVs move in the same direction, either clockwise or 
counter-clockwise, while in a two-dimensional grid layout, vehicles can change direction 
depending on the arc they are traversing. The underlying topology of an AGV guide-path 
can be modeled as a general directed network G=(V, A), where V is the set of nodes and A 
comprises the arcs defined by pairs of nodes in V. An intersection point can be defined as 
a point where at least three guide-path segments (arcs) meet, which may or may not 
coincide with a pick-up and drop-off (P/D) station. Note that, while circular or loop 
layouts do not have intersection points, uni-dimensional (non-circular) and two-
dimensional grid type layouts must have at least one. A node of G may be a P/D station, 
an intersection point, or an intersection point with a P/D station. Let I={v1,v2,...,vm} be the 
set comprising the m P/D stations. Let Q= {y1, y2, ...,yq} be the set containing the q 
intersection points in the guide-path. Then, V = I∪Q. Note that, in well-designed guide-
path systems, the out-degree of all nodes of G must be at least 1. Otherwise, a node with 
an out-degree of 0 would create a deadlock state. 

Let J = {x1, x2, …,xn} be a set of dwell points in G where the n AGVs are 
positioned when they become idle. In addition, let S = {S1, S2, ...,Sn} be a partition of set 
I, where Sj includes the P/D stations served by the AGV assigned to dwell point xj. Note 
that a pair (J, S) provides a feasible solution to the dwell point location problem as long 
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as the dwell points in J belong to G, S is a partition of I, and vehicle time restrictions are 
satisfied. 

Let d(xj, vi) be the shortest distance from dwell point xj to pick-up station vi, for 
xj∈J, vi∈I. It is assumed that d(xj, vi) = 0 if and only if vi = xj; otherwise, d(xj, vi)> 0; We 
use the Floyd–Warshall algorithm ([6]) to determine the lengths of the shortest paths 
between dwell points and P/D stations. Let sE be the speed of a vehicle when it travels 
empty and rji = d(xj, vi)/sE be the response time from dwell point xj to pick-up station vi. 
The response time rji for a request from P/D station vi handled by an AGV located in 
dwell point xj is the empty travel time from xj to vi. We partition the set of intersection 
points in Q into Q’ and Q’’, where Q’ is the set of intersection points in G with out-degree 
equal to 1 and Q’’ is the set of intersection nodes in G with out-degree of at least 2. Thus, 
Q = Q’∪Q’’ and V = I ∪Q’∪ Q’’. In addition, let fr(J, S) be the objective function for the 
dwell point location problem representing a regular performance measure of response 
times. Thus, fr(J, S) is a non-decreasing function of the response times {rji :xj∈J, vi∈Sj }. 

Ventura and Rieksts [8] proved that there exists an optimal set of dwell points that 
minimizes the maximum response time in a loop guide-path layout, where all dwell 
points coincide with P/D station locations. Ventura et al. [9] showed that, for any regular 
performance measure of response times fr(J, S) for an AGV system with n vehicles and m 
P/D stations in a general guide-path layout, there exists an optimal solution (J*, S*), 
where dwell points are either P/D station locations or intersection points with out-degree 
of at least 2, i.e., J*⊆I∪Q” (see Theorem 1 in [9]) . 
 

Problem (P): Minimizing the maximum response time ([3], [7]) 
The objective of the problem is to optimally determine dwell points for idle AGVs that 
minimizes the maximum response time in a general guide-path layout. Let R be the 
maximum response time of the system that needs to be minimized. 

Based on Theorem 1 in [9], I ∪Q” = {x1, x2, …,xp} is the set of potential dwell points 
for positioning idle AGVs, where p = m + q" is the cardinality of I∪Q” and q" is the 
number of intersection points with out-degree of at least 2.  
 

The proposed MILP model uses the following decision variables: 

1,    if station  is assigned to the AGV in dwell point ,
for 1,2,..., , 1, 2,..., .

0,   otherwise,

1,   if an AGV is located in dwell point ,
for 1,2,..., .

0,   otherwise,

⎧
= = =⎨
⎩

⎧
= =⎨
⎩

i j
ij

j
j

v x
X i m j p

x
δ j p

 
The assumptions considered in the model are given below:  

a) We assume that >I n .  
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b) The velocity of the vehicles is assumed to be constant. 
c) Traffic interference between vehicles is not taken into consideration. 
d) The loading time at the pick-up station, transport time to the drop-off station, 

unloading time at the drop-off station, and the time to return to the dwell point are 
insignificant.  

e) It is assumed that an AGV can serve all the pick-up requests assigned to it.  
f) All the pick-up requests from a station are served by the same AGV. 

 
The following MILP model determines the optimal response time and set of dwell 

points that minimize the maximum response time: 

(P)   MinimizeR ,
 subject to 

1
1,

=

=∑
p

ij
j
X  1,2,..., ,∀ =i m  (1) 

1
,

=

≤∑
m

ij j
i
X I δ  1,2,..., ,∀ =j p  (2) 

1=
=∑

p

j
j
δ n ,  (3) 

,ji ijr X R≤
	   1,2,..., , 1,2,..., ,i m j p∀ = ∀ = 	   (4) 

{ }0,1 ,∈ijX  1,2,..., , 1,2,..., ,∀ = ∀ =i m j p  (5) 

{ }0,1 ,∈jδ  1,2,..., ,∀ =j p  (6) 
0.R ≥

	  
	   (7) 

 
In this model, constraint set (1) ensures that each P/D station is assigned to a single 

AGV prepositioned at a precise dwell point. Constraint set (2) ensures that P/D stations 
are assigned to a potential dwell point xj only when an AGV is assigned to xj (δj = 1). 
Constraint (3) ensures that exactly n dwell points are selected. Constraint set (4) is used 
to determine the maximum of the response times among the pick-up requests from all the 
P/D stations. Constraint sets (5) and (6) show the binary variables considered in the 
model. Constraint (7) is the non-negativity constraint for the maximum response time 
variable. 
 
3  Genetic algorithm (GA) for locating dwell points in general guide-
path layouts 
Large-scale NP-hard problems are difficult to solve using mathematical models in a 
general computational sense. The time complexity of the problem increases exponentially 
as a function of the problem size. GAs are considered to be a powerful set of global 
search techniques that have been shown to produce very good results for a wide class of 
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NP-hard problems (Paul and Rajendran [6]). In this study, we propose a generic GA 
procedure for the dwell point location problem for general guide-path layouts. The GA 
procedure can be easily adapted to solve the problem with any linear/non-linear function 
of the response times by modifying the fitness function appropriately. The terminology 
and steps of the GA procedure are provided below.  
 

Notation 
cf  :  Fitness value of chromosome c. 
cRP  : Relative fitness of chromosome c in the parent population. 
cCP  : Cumulative fitness of chromosome c in the parent population. 

L : Length of the chromosome.  
max_gen : Maximum number of generations (termination criteria). 
MR : Mutation rate. 
N : Population size. 
no_ gen : Number of the current generation. 
par_pop : Chromosomes in the parent population. 
off_pop : Chromosomes in the offspring population. 
u : Uniform random number between 0 and 1. 
Z(c) : Objective function value of chromosome c. 

 
Chromosome representation 

In this study, a feasible solution to the dwell point location problem can be represented in 
vector form. For a problem with p potential dwell points, the length of the chromosome 
(L) is equal to p. For example, consider a loop layout with 7 stations and 3 AGVs (i.e., 7 
stations represent the potential dwell point locations). The permutation of potential dwell 
point indexes represents the chromosome. The chromosome representation is shown in 
Figure 2. In this example, the location of the dwell points would be in stations 1, 3, and 5. 
 
 
 
 

Figure 2: Chromosome representation 

Initial population 
Population size is one of the GA parameters that can significantly affect its performance. 
Diversity in population is one of the key requirements for quick convergence of any GA 
methodology ([6]). Based on initial experimentation, we choose to have a population size 
(N) of 30. The chromosomes in the initial population are generated randomly.  

Once the locations of the dwell points are known, the assignment of dwell points 
to the P/D stations is done based on the least response time. 
Fitness value 

p =L=7 

7 3 6 4 5 2 
 

1 
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As the objective function o this problem has to be minimized, the fitness value of each 

chromosome is calculated by the following 
1fitness function ( )=

1 ( )+cf Z c
. 

Fitness function for problem (P) = ( )
1
1 R+ , where 

 = max {  : 1,..., , 1,..., }.ji ijR r X i m j p∀ = ∀ =  

The step by step procedure for the proposed GA is presented in this section. 

STEP 1: Initialize no_gen = 0. 
STEP 2: Generate N chromosomes randomly for the initial population. Each gene 

represents a potential dwell point index and each chromosome represents a 
permutation of potential dwell point positions.  

STEP 3: Evaluate the fitness function (fc) of the chromosome in the initial population. 
STEP 4: With the fitness value fc, calculate the selection probability RPc and 

cumulative probability CPc for every chromosome c in par_pop. 
STEP 5:   Perform the crossover operation from par_pop, to obtain N offspring 

chromosomes. Set these offspring chromosomes to off_pop: 
In the GA-GX, off_pop is generated by using gene-wise crossover (GX) 
mechanism [9]. 
In the GA-OX, off_pop is generated by using order crossover (OX) 
mechanism [9].  
In the GA- GX-OX, off_pop is generated is using hybrid crossover mechanism 
[9]. Generate u. If 0 <u< 0.5, GX crossover is used to generate off_pop; If u> 
0.5, OX crossover is used to generate off_pop. 
Detailed implementation steps of the GX and OX mechanisms are given in 
[9]. 

STEP 6:   The N chromosomes in off_pop is subjected to mutation, with a probability of 
MR. We use the swap mutation operator in this study [9]. 

STEP 7: Evaluate the fitness function (fc) of every chromosome in off_pop. 
STEP 8: From both par_pop and off_pop, select the best N distinct chromosomes based 

on the fitness value, to form the par_pop for the next generation.  
STEP 9: Increment no_gen = no_gen+1; 
  If no_gen<max_gen, then return to STEP 4; else proceed to STEP 10. 
STEP 10: Stop. The best solution (i.e., the best chromosome) among the chromosomes 

in the final par_pop and its objective function value constitute the best known 
solution to the problem. 

 
A detailed discussion on the crossover mechanisms and parameter settings of the 

GA are given in [9]. 
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4 Illustrative example 
In this section, we illustrate the application of the proposed MILP model and GA based 
methodology (with three types of crossover mechanisms) to a two-dimensional grid 
layout problem. We consider the objective of minimizing the maximum response time. 
Consider the grid layout example in Figure 3. The number of stations (m) is 15. In this 
example, it is assumed that sE = sB = 1. There are seven intersections in the layout of 
which only two intersections (which are numbered as 16 and 17) have an out-degree 2. 
The other five intersections, with an out degree 1, do not qualify as potential dwell points 
(based on Theorem 1 in [9]). So, the number of potential dwell points (p) is 17 (15 P/D 
stations and 2 intersections).The number of AGVs (n) in the system is taken as 3. The 
distances between the stations and potential dwell points are given in Table 1. 
 

 
Figure 3: Two-dimensional grid layout (illustrative example) [9] 

 

Table 1: Distance between the stations (illustrative example: two-dimensional grid 

layout) 

From P/D 
station 

To P/D 
station 

Distanc
e 

 From P/D 
station 

To P/D 
station 

Distanc
e 

1 2 1.94251  12 17 3.27245 
2 3 5.21129  13 8 3.1768 
3 4 1.67016  14 7 7.15363 
4 15 2.54193  15 5 4.68419 
5 6 5.56047  15 16 7.02973 
6 7 8.5693  16 11 2.38905 
7 8 5.49253  16 12 3.12622 
8 9 1.97007  16 14 4.03392 
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9 1 2.37270  17 9 4.32003 
10 2 2.44572  17 10 8.68274 
11 3 9.06542  17 13 5.85618 

 

We solve the illustrative example using the MILP model and the three versions of 
the GA for problem (P). The results are shown in Table 2. 
 

Table 2: Results of the illustrative example: two-dimensional grid layout 

 
Optimal 
solution 
(MILP) 

CPU 
time 

(MILP) 
in 

seconds 

GA objective 

Best GA 
objective 

CPU 
time 

(GA) in 
seconds 

Best 
solution: 
iteration 
number 
in GA 

Best 
solution 

CPU time 
in GA (in 
seconds) 

% 
deviation 

of GA 
solution 

from 
optimal 

GX OX GX-OX 

(P) 12.7866 2.94 12.7866 12.7866 12.7866 12.7866 < 0.01 10 < 0.01 0.00% 
GA is able to find the optimal solution for this illustrative example for problem (P). 

GA provides an alternate optimal solution for problem. The dwell point locations and the 
assignment of the stations to the dwell points are shown in Table 3. 
 

Table 3: Dwell point locations and their assignment (illustrative example: two-
dimensional grid layout) 

  Dwell point Stations assigned to the dwell point 

(P) 

Optimal solution 
Station 4 4, 5, 6, 11, 15 
Station 12 1, 2, 8, 10, 13 

Intersection16 3, 7, 9, 12, 14 

GA solution 
Station 4 4, 5, 6, 15 
Station 12 1, 2, 8, 9, 10, 12, 13 

Intersection16 3, 7, 11, 14 
 

The proposed GA procedure yields an optimal solution for the two-dimensional 
grid layout problem. A computational study has also been performed on loop layout and 
two cases of two-dimensional grid networks in [9] and the results are promising. The 
average deviation of GA solution from optimal is 1.75% and less than 2% for loop layout 
and two-dimensional grid network problems respectively ([9]). 
 
5 Conclusions 
AGV systems provide a promising material handling solution which can improve 
productivity of automated manufacturing systems and distribution centers along with 
reducing labor costs, material handling damage, and increasing dependability and safety. 
General directed guide-path layouts, such as grid type layouts, are becoming more 
common in manufacturing and warehouse systems for efficient usage of storage space 
and reduction of travel times between storage locations. In this study, we have considered 
the problem of locating dwell points for idle vehicles in an AGV system. We have 
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addressed the problem of optimally determining dwell points for multiple AGVs in 
general directed networks with the objective of minimizing the maximum response time. 
We have developed an MILP model and a generic GA procedure for solving the problem. 
We have illustrated the model and the GA procedure using a two-dimensional grid layout 
example. The proposed GA was able to give an optimal solution for the illustrative 
example. Our computational study on the loop layout and two-dimensional grid network 
problems showed that the GA procedure was able to find near optimal solutions in 
reasonable CPU times. This proves the potential of the proposed GA to handle real-time 
problems. 
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